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The nonlinear stability of a laminar boundary layer that flows at high Reynolds
number (Re) above a plane surface covered by a liquid film is investigated. The basic
flow is considered to be nearly parallel and the simulations are based on triple deck
theory. The overall interaction problem is solved using the finite element methodology
with the two-dimensional B-cubic splines as basis functions for the unknowns in
the boundary layer and the film and the one-dimensional B-cubic splines as basis
functions for the location of the interface. The case of flow above an oscillating solid
obstacle is studied and conditions for the onset of Tollmien–Schlichting (TS) waves
are recovered in agreement with the literature. The convective and absolute nature of
TS and interfacial waves is captured for gas-film interaction, and the results of linear
theory are recovered. The evolution of nonlinear disturbances is also examined and
the appearance of solitons, spikes and eddy formation is monitored on the interface,
depending on the relative magnitude of Froude and Weber numbers (Fr, We), and
the gas to film density and viscosity ratios (ρ/ρw , μ/μw). For viscous films TS waves
grow on a much faster time scale than interfacial waves and their effect is essentially
decoupled. The influence of interfacial disturbances on short-wave growth in the bulk
of the boundary layer bypassing classical TS wave development is captured. For
highly viscous films for which inertia effects can be neglected, e.g. aircraft anti-icing
fluids, soliton formation is obtained with their height remaining bounded below a
certain height. When water films are considered interfacial waves exhibit unlimited
local growth that is associated with intense eddy formation and the appearance of
finite time singularities in the pressure gradient.

1. Introduction
Boundary layer interaction with solid, liquid or even elastic interfaces manifests

itself in a number of technical applications and naturally occurring phenomena.
Traditionally, interaction with wall mounted obstacles (Smith 1985; Smith & Bodonyi
1985; Tutty & Cowley 1986), wakes (Veldman 1981) or flow in constricted channels
(Smith 1976a,b; Smith et al. 1981) have been studied via steady or unsteady interactive
boundary layer calculations in order to examine the effect of wall curvature or wall
motion on growth of instabilities and transition. Comparison against experimental
observations has shown that such an approach provides very good agreement on
account of capturing linear and nonlinear growth of Tollmien–Schlichting (TS) waves
and Rayleigh modes, or skin friction and pressure loss in wakes, at large Reynolds
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numbers (Re). Nowadays, direct numerical simulations of the full Navier–Stokes have
made such studies just possible without having to resort to the interactive boundary
layer formulation.

Nevertheless, recently a wide range of applications have emerged involving
boundary layer interaction with a free or an elastic surface. For example, gas–
liquid interaction at high Re is of great interest in the study of airfoil performance
under rainfall conditions. Experiments that were performed on commercial airfoils by
NASA (Bezos et al. 1992) have shown that the lift coefficient decreases, whereas the
drag increases under such conditions. Experimental measurements with airflow on
a wall covered by a viscous liquid film (Ludwieg & Hornung 1989) indicate growth
of interfacial waves that may determine transition to turbulence. Steady solutions
(Smyrnaios, Pelekasis & Tsamopoulos 2000) for boundary layer flow over a liquid
film that grows on a NACA airfoil have indicated upstream movement of the region
where flow reversal occurs, with increasing film thickness. Linear stability analysis
using the Orr–Sommerfeld equations (Ozgen, Degrez & Sarma 1998) and in the
context of triple deck theory (Timoshin 1997; Pelekasis & Tsamopoulos 2001) verifies
the importance of interfacial waves, even though their growth rate is lower than that
of the TS waves. In particular, it was shown in the latter study that interfacial waves
can be absolutely unstable within a parameter range that is relevant to the case of
high Re flow above a thin water film. Therefore, it was suggested that the liquid
film that covers an airfoil may be responsible for reduction in the lift coefficient,
possibly through premature boundary layer separation as a result of their interaction.
It is, however, important to ascertain the persistence of the above phenomena in the
nonlinear regime.

In the present study, we focus on the stability of a gas boundary layer that interacts
with a thin liquid film. The instabilities that appear in such flows are TS waves,
interfacial waves and Rayleigh instability. In flows with simple velocity profiles the
disturbances that grow faster are TS waves belonging to the lower branch of the
neutral stability diagram (Smith 1979a). In the context of weakly nonlinear theory
(Smith 1979b) it was shown that when a boundary layer is perturbed via a periodic
excitation that lies beyond the linear stability threshold but sufficiently near criticality,
TS waves arise and grow in space until they reach saturation amplitude. When
high-frequency disturbances were considered (Smith & Burggraf 1985; Smith 1986)
fast growth and spreading was observed without saturation. In fact, the long-time
behaviour of initial TS disturbances revealed the possibility for spike formation due
to vorticity bursts from the viscous sublayer. Numerical solutions of boundary layer
interaction with an oscillating hump that is mounted on a plane wall were performed
by Terent’ev (1981, 1984), Ryzhov & Terent’ev (1986) and Duck (1985) using spectral
methods verify the results of linear analysis but also capture catastrophic growth
of higher modes due to nonlinearity. Furthermore, they indicate growth of Rayleigh
modes when the height of the hump exceeds a certain size. Indeed, the appearance of
Rayleigh modes and their predominance over TS waves was captured numerically via
a finite difference approach by Tutty & Cowley (1986) and verified by linear stability
analysis. Rayleigh modes are associated with inflexion points in the basic velocity
profile and the onset of flow reversal. TS instabilities are convectively unstable and
consequently they tend to travel away from the location of the initial disturbance,
while Rayleigh modes lead to eddy splitting and detachment.

Numerical simulations have been extensively used in the past in order to study
boundary layer stability and separation via the unsteady interacting boundary layer
theory in flow arrangements involving bluff bodies, external vortices, gas–liquid
interfaces compliant surfaces and compression ramps. As was mentioned above the
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Fourier transform (FT) was employed in some of the earlier studies on the effect
of oscillating bodies on boundary layer dynamics, e.g. Terent’ev (1984) and Duck
(1985). The bulk of the methods that are available in the literature employ the finite
difference method in various contexts.

The alternating direction implicit (ADI) scheme, coupled with a mixed Eulerian–
Lagrangian formulation, was employed by Peridier, Smith & Walker (1991a,b) in
order to study vortex induced boundary layer separation over a plane surface in the
context of unsteady interacting boundary layer theory. Thus, they were able to capture
focusing of the boundary layer into an eruptive spike that leads to separation. They
also illustrated numerically that such a behaviour is associated with the formation of
a finite time singularity near the surface in the interactive boundary layer formulation.
They analysed the dynamics of the singularity and showed that the early stages of
its development are in agreement with the theory of Elliott, Cowley & Smith (1983)
whereas its final stages evolve towards the structure proposed by Smith (1988) in an
article that generalizes the results by Brotherton-Ratcliffe & Smith (1987) on two-fluid
flow using triple-deck theory. More specifically, a singularity in the pressure gradient
is developed within finite time that is manifested via an eruptive spike in the pressure
and displacement thickness profiles. Similar spike formation is observed in the context
of the present flow arrangement where the unsteadiness is enforced upon the otherwise
steady boundary layer by the film motion. This corroborates the assertion made in the
above studies that the process of eruptive spike formation in the interacting boundary
layer development is general and not confined to TS waves. In fact, it will be seen here
that film viscosity can arrest the evolution of the singularity leading to saturation of
the film height and the displacement thickness of the boundary layer. A comprehensive
account on the dynamic evolution of spikes and spots in the aftermath of nonlinear
TS wave formation and growth, using the two-dimensional and three-dimensional
interactive boundary layer formulation, is provided by Smith (1995). More recently,
numerical simulations of the two-dimensional Navier–Stokes equations that were
performed by Bowles, Davies & Smith (2003) via a hybrid finite difference spectral
method, in order to capture nonlinear growth of a TS wavetrain, provided qualitative
support of the above described mechanisms for planar boundary layer separation as
well as their relevance to the ensuing three dimensional dynamical effects.

In the context of supersonic boundary layers, an implicit first order accurate in
time and second-order accurate in space finite difference numerical scheme that was
originally developed by Ruban (1978), a similar scheme has also been used by Jenson,
Burggraf & Rizzetta (1975), was employed by Cassel, Ruban & Walker (1995, 1996)
and more recently by Fletcher, Ruban & Walker (2004) in order to study the onset
of absolute and convective instabilities in compression ramp flows. The evolution
of unstable wave packets leading to violent breakdown of the boundary layer was
discussed in these studies and associated with inflection points in the streamwise
velocity component, in the manner pointed out earlier by Tutty & Cowley (1986),
while the stabilizing effect of wall cooling was quantified. A more comprehensive
list of the available analytical and numerical techniques for solving the unsteady
interactive boundary layer formulation is provided by Sychev et al. (1998).

The interfacial waves that develop in a gas–liquid interface have smaller growth
rates compared to Rayleigh and TS waves (Timoshin 1997; Ozgen et al. 1998) and
it was shown by linear analysis that they can be either convectively or absolutely
unstable (Pelekasis & Tsamopoulos 2001). Linear and nonlinear evolution of travelling
waves on a gas–liquid interface was studied by Caponi et al. (1982) using a
finite difference solution of the two-dimensional Navier–Stokes equations, indicating
significant deviations from linear behaviour in the surface-pressure distribution and
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wave speed, as the wave steepness increased. These simulations were, however,
performed for arbitrary velocity distribution on the interface without proper account
of the interaction between the two phases. It will be interesting to verify the extent to
which the effects that were identified in the above studies will be recovered in the case
of a film interacting with a boundary layer, and the impact that this will have in the
exterior flow. In particular the existence of travelling waves for the parameter range
that is relevant to realistic gas–liquid systems will be investigated, as is the case with
air interacting with a de/anti-icing fluid or water. The evolution of two fluid systems
and the development of instabilities and singularities in liquid layers was first studied
via the triple-deck formulation by Brotherton-Ratcliffe & Smith (1987). Subsequently,
Smith, Li & Wu (2003) studied theoretically the effect of the thin film of air that is
formed between a drop and a nearby solid wall as the former impinges on it. Potential
flow conditions are assumed in the drop, whereas the formulation in the gas phase
ranges from lubrication to unsteady boundary layer or even totally inviscid depending
on Reynolds number and the product between viscosity and inverse density ratios.
Capillary forces in the air-drop interface were added later by Purvis & Smith (2004)
in a study that focused on the delay of drop impact and post impact effect as a result
of air cushioning. It will be seen that a similar distinction applies in the present study,
in the sense that the viscosity and density ratios between the two fluids determine
the validity range of lubrication approximation in the liquid film before film inertia
becomes important. The later effect, along with capillarity, plays a central role in the
long term dynamics of air-film interaction.

Interaction between a boundary layer and a film is typically treated in the linear
limit (Timoshin 1997; Ozgen et al. 1998; Pelekasis & Tsamopoulos 2001), with
the exception of Tsao, Rothmayer & Ruban (1997) who examined the nonlinear
interaction between a boundary layer and a viscous liquid film. In the latter study,
agreement between linear theory and numerical simulations was obtained in the range
of stable interfacial waves and assuming spatial periodic solutions. Limited results
were presented in the unstable regime. The present study is intended to fill this gap
by carrying out a numerical investigation that will capture the nonlinear evolution
of unstable interfacial waves and their effect on the surrounding boundary layer. To
this end, a numerical methodology is developed that not only incorporates the basic
features of wave growth, i.e. wavelength, frequency and group velocity, pertaining to
the interface and the bulk of the flow, but also captures the effect of nonlinearity
on the coupled dynamics between the boundary layer and the film. It is based on
the finite element method that accommodates the specific features of such flows
as efficiently as possible. As was explained above, triple deck theory provides the
theoretical background where all the basic physics of the problem is included. The
triple-deck approach conveys the essential information regarding flow-film or flow-
obstacle interaction, without, however, the excessive numerical effort that is required
by direct numerical simulations (DNS) in order to capture all the relevant time and
space scales involved in the two phases. Since the long-time dynamic behaviour of
interfacial waves needs to be captured care is taken to optimize the accuracy of the
method while eliminating growth of unwanted short waves. Therefore, motivated by
the encouraging results from studies on interfacial instabilities of oscillating bubbles
(Pelekasis, Tsamopoulos & Manolis 1992), we introduce two-dimensional B-cubic
splines as basis functions (Prender 1989) and compare their performance against the
standard biquadratic Lagrangian basis functions.

In § 2 the governing equations for flow over a liquid film or a moving solid obstacle
are presented. The numerical method that was developed specifically for this type
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of problems is described in detail in § 3. The reliability of the numerical method is
tested by solving the flow of air above a moving hump that is mounted on a flat
plate, in order to capture TS waves and eddy formation and compare against existing
numerical–theoretical studies. Finally, in § 4 we present the results and conclusions
that were drawn based on the simulations for boundary layer interaction with a liquid
film. In § 4.1 numerical results for the development of TS and interfacial waves are
presented, in which case it is shown that gas flow is essentially quasi-steady on the
time scale of interfacial waves for films with much larger viscosity in comparison
with that of air, e.g. water or de/anti-icing fluid. In § 4.2 emphasis is placed on the
evolution of interfacial waves for films of this type. The appearance of travelling
waves and solitons is investigated as well as the case of absolute versus convective
instability. The results are classified parametrically in terms of the Froude and Weber
numbers as well as parameter M which is associated with the gas to film viscosity
(μ/μw) and density (ρ/ρw) ratios and is a measure of film inertia. The appearance
of singularities in the flow pattern is addressed in the context of previous theoretical
predictions and their effect in boundary layer separation is discussed. Finally, the
main conclusions of our investigation are presented in § 5.

2. Problem formulation
2.1. Basic flow

We consider a thin liquid film of density ρw and viscosity μw that covers a flat plate
of characteristic length L. Above the film flows a gas stream of density ρ, viscosity μ

and free stream velocity U∞, Re = U∞ρL/μ � 1, that puts the film into motion. The
equations that describe the basic flow have been calculated numerically as well as
asymptotically (Nelson, Alving & Joseph 1995; Smyrnaios et al. 2000). In the limit
ε = Hf /(L Re−1/2) → 0, where Hf is the film thickness and LRe−1/2 the thickness of
the boundary layer, the solution inside the boundary layer assumes the Blasius profile
UO . The shear stress inside the boundary layer is ∂U0/∂Y ′(x, Y ′ = 0) = 0.332/

√
x where

Y ′ = LRe−1/2. Inside the liquid film the thickness and the velocity are

Ho(x) = x3/4

√
2

0.332
; uo(x, y) = x1/4z

√
0.664, z =

y

H0(x)
; (2.1a)

Ho(x) = x1/4

√
2

0.332
; uo(x, y) = x−1/4z

√
0.664, z =

y

H0(x)
; (2.1b)

when a constant rainfall (Smyrnaios et al. 2000) or constant mass flow rate (Timoshin
1997; Nelson et al. 1995) is assumed, respectively. The characteristic scales that have
been used in the gas phase are L, LRe−1/2 as characteristic length scales in the x and
y directions, respectively, and U∞, U∞Re−1/2 as characteristic velocities in the x and
y directions, respectively. In the liquid film L, Hf have been used as characteristic
length scales in x and y directions, and uf , uf Hf /L as characteristic velocities in the
x and y directions, respectively. Relevant estimates of Hf and uf are provided by
Smyrnaios et al. (2000) and Nelson et al. (1995) for the case of a steady rainfall rate
ṙ and constant mass flow rate Q, respectively, based on the mass and shear stress
balances written on the gas–liquid interface.

2.2. Governing equations

We are interested in examining the nonlinear stability of two-dimensional laminar
airflow past a solid obstacle mounted on an otherwise flat plate or a thin liquid film
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that develops on a flat plate. We consider a flat plate of characteristic length L and
a gas stream that flows at high Re above this plate.

It is widely accepted that the appropriate asymptotic framework to study the
stability of a boundary layer in the presence of an obstacle, in the limit of large
Re numbers, is provided by triple deck theory (Smith et al. 1981). It provides a
starting point for establishing conditions for which the dynamics of an interface
can possibly trigger dramatic changes, such as flow reversal or massive separation
in the boundary layer. For an external flow characterized by a free stream velocity
U∞ that flows over a surface whose length scale is L, as Re =U∞L/ν asymptotically
increases the thickness of the internal viscous sublayer O(Re−5/8L) is determined by
the requirement that the inertia and viscous contributions of the disturbance flow
field balance each other. The length of the viscous sublayer O(Re−3/8L) is determined
by the requirement that changes in the pressure inside the viscous sublayer can
interact with and affect pressure variations of the outer flow. Thus, the axial velocity
is scaled by velocity gradients in the transverse direction as viewed inside the sublayer
(U∞/LRe−1/2)LRe−5/8 ≈ U∞Re−1/8. The middle layer thickness is the same as the
classical boundary layer thickness O(Re−1/2), whereas that of the external layer is the
same as the length scale in the axial direction O(Re−3/8).

The fastest growing disturbances in boundary layer flow correspond to wavelengths
belonging to the range of length scales of the triple deck theory (Smith 1979a). In
this context, the appropriate local scale to describe the stability of the flow at a
given position x = xo is X = (x−x0)/λ, where λ= Re−3/8L . Clearly, the local scale
X ∼ λ= LRe−3/8 is much smaller than the scale of the basic flow x ∼ L. Therefore
the basic flow can be considered to be nearly parallel as far as the development
of instabilities is concerned. The shortest obstacle that can cause flow separation
has comparable thickness with the viscous sublayer in the gas phase Hf ∼ Re−5/8L.
Subsequently, dimensionless quantities are introduced via the following characteristic
scales: length λ= LRe−3/8 in the streamwise direction and thickness LRe−5/8 in the
perpendicular direction for both the gas stream and the film/obstacle. The film
thickness as estimated by the base flow (Smyrnaios et al. 2000; Nelson et al. 1995)
is indeed on the order Hf = LRe−5/8. The characteristic velocities in the gas phase

are εU∞ in the streamwise direction and ε3U∞ in the perpendicular one, ε = Re−1/8,
whereas in the liquid phase the characteristic velocities are uf = (μ/μw)εU∞ and
(μ/μw)ε3U∞ in the streamwise and perpendicular directions, respectively. In the
following μ and ρ denote viscosity and density whereas subscript w signifies properties
of the film. Quantity ε2ρU 2

∞ is used as a pressure scale for both phases. The above
scales are obtained as a result from balancing the inertia, viscous and pressure terms.
The small term in the asymptotic description of the triple deck theory is equal to
ε =Hf /LRe−1/2 = Re−1/8. Finally, the appropriate time scales are t = λ/εU∞ for TS
waves and T = λ/uf = λ/ε(μ/μw)U∞ for interfacial waves. Since we are interested in
the effect of interfacial waves on the boundary layer we chose the time scale furnished
by the motion of the interface in the dimensionless formulation that follows.

We obtain the dimensionless problem formulation in the context of nonlinear
triple deck theory, following previous studies on boundary layer stability (Smith
1979a, b; Timoshin 1997; Pelekasis & Tsamopoulos 2001) upon introduction of
the characteristic scales listed in the previous paragraph. In the gas phase we
use the transformed variable Y = Y − H (X, t), where H is the dimensionless film
thickness. Moreover, we introduce Prandtl’s transposition via variable V , where
V =V − U (∂H/∂X) − (μ/μw)(∂H/∂T ). Therefore the dimensionless equations that
describe the flow in the viscous sublayer of the boundary layer are
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X-momentum:

μ

μw

∂U

∂T
+ U

∂U

∂X
− ∂Ψ

∂X

∂U

∂Y
= −∂P

∂X
+

∂2U

∂Y
2
, U =

∂Ψ

∂Y
, (2.2a,b)

with ψ the streamfunction. Y-momentum establishes the pressure as being
independent from the transverse direction

∂P

∂Y
= 0. (2.3)

The pressure is related to the displacement thickness through the interaction law,
which arises from the solution of Laplace’s equation in the upper deck of the boundary
layer:

P =
1

π

∫ +∞

−∞

∂A

∂s

ds

X − s
. (2.4)

The velocity has to match as the viscous sublayer merges with the main deck.
Therefore,

U (Y → ∞) =
∂U0

∂Y ′ (x0, Y
′ = 0)

(
A(X) + Y + H − H0 +

μ

μw

H0

)
, (2.5)

where ∂U0/∂Y ′(x, Y ′ = 0) and H0 refer to the shear stress on the flat plate and the
film thickness as predicted by the base solution U0 in the gas stream. U0 is the
Blasius solution with Y = LRe−1/2. When the displacement thickness vanishes, A= 0,
the velocity of the gas stream, evaluated on the gas-film interface for the base flow,
is recovered. In the liquid film we introduce the transformed variable ȳ = y/H (X, t)
along with the triple-deck length and time scales. Thus, conditions on the gas–liquid
interface, Ȳ = 0, y =1, read:

continuity of tangential and normal velocities:

U =
μ

μw

u,
∂Ψ

∂X

∣∣∣∣
Y=0

= 0, (2.6a,b)

continuity of tangential and normal stresses:

∂U

∂Y
=

1

H

∂u

∂y
, P − p =

1

We

∂2H

∂X2
(2.7a,b)

and the kinematic boundary condition:

∂H

∂T
+

∂ψ

∂X
= 0; (2.8)

capital and small case letters denote quantities defined in the gas phase and the film,
respectively.

In the x-momentum inside the film we substitute the normal force balance, equation
(2.7b), for the liquid pressure. Thus, the governing equations in the film are
X-momentum:

M

(
∂u

∂T
+ u

∂u

∂X
+

y − 1

H

∂u

∂y

∂ψ

∂X

)
= −∂P

∂X
+

1

We

∂3H

∂X3
−

(
ρw

ρ
− 1

)
Fr

∂H

∂X

+
1

H 2

∂2u

∂y
2
, u =

1

H

∂ψ

∂y
, (2.9a,b)
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where ψ is the stream function in the film and v = − ∂ψ

∂X

∣∣
y
,

y-momentum:

∂p

∂y
= 0 (2.10)

and the non-slip non-penetration conditions on the surface of the flat plate:

y = 0 : u = ψ = 0; (2.11)

coefficient
(
y − 1

)
/H in (2.9) arises from the variable transformation in the y direction

in the liquid film which yields

∂u

∂T

∣∣∣∣
X,y

=
∂u

∂T

∣∣∣∣
X,y

− y

H

∂ψ

∂y

∂H

∂T
=

∂u

∂T

∣∣∣∣
X,y

+
y

H

∂ψ

∂y

∂ψ

∂X

and

∂ψ

∂X

∣∣∣∣
X,y

=
∂ψ

∂X

∣∣∣∣
X,y

− y

H

∂ψ

∂y

∂H

∂X
.

In the above formulation dimensionless parameters arise that determine the
importance of inertia, surface tension and gravitational forces, respectively, in the
film motion,

M=

(
μ

μw

)2
ρw

ρ
,

1

We
=

(
μ

μw

)2
1

We
=

(
μ

μw

)2
ε4σ

ρu2
f Hf

and

1

Fr
=

(
μ

μw

)2
1

Fr
=

(
μ

μw

)2
gHf

u2
f

.

We and Fr denote modified Weber and Froude numbers that incorporate the
air/film viscosity ratio in such a way as to become, roughly, O(1) quantities. Finally,
∂U0/∂Y ′(x0, Y

′ = 0) = 0.332/
√

x0 and H0 contain information regarding the base flow
at the point of inception of the disturbance, x0. When the film viscosity is much larger
than the viscosity of the gas, μ/μw → 0, interfacial waves evolve on a much slower
time scale than TS waves (Pelekasis & Tsamopoulos 2001; Rothmayer, Matheis &
Timoshin 2002). Since the time scale relevant to the evolution of interfacial waves
is employed for rendering time dimensionless, the small parameter μ/μw appears in
the transient term of (2.2a). When the evolution of interfacial waves is of interest the
transient term can be dropped from the equations of motion in the gas phase which
is assumed to be in a quasi-steady state, after an initial transient has elapsed, whereby
the film imposes its dynamics on the gas stream via changes in the film height. Along
with the transient term that is dropped out of the X-momentum (defined in (2.2)),
the tangential and normal velocities (defined in (2.6)) are also taken to vanish at
the interface. In this fashion the spatiotemporal evolution of the interfacial waves
can be investigated decoupled from the TS waves. Interaction between a boundary
layer of air and a growing water film falls in this category. In the special case where
M → 0 the resulting equation that describes flow in the liquid film does not include
inertia terms, thus providing the spatiotemporal evolution of the interface as a result
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of shear, pressure, surface tension and gravity forces:

∂H

∂T
= − ∂

∂X

(
H 2

2

∂U

∂Y

∣∣∣∣
Ȳ=0

)
+

∂

∂X

(
H 3

3

∂P

∂X

)
− ∂

∂X

(
H 3

3We

∂3H

∂X3

)

+
∂

∂X

(
H 3

3

(ρw/ρ − 1)

Fr

∂H

∂X

)
. (2.12)

The above equation is derived by solving the X momentum in the film for the
streamwise velocity U, after eliminating inertia terms and incorporating the interfacial
and boundary conditions. It pertains mostly to the interaction of anti-icing fluids with
an oncoming boundary layer of air, owing to the very large viscosity of the former.

In the context of the present study three different problems are solved. The first one
corresponds to the overall study of growth of interfacial waves in the presence of TS
waves and comprises (2.2) and (2.9), subject to conditions (2.3)–(2.7), (2.10) and (2.11)
and kinematic condition (2.8). The second and third problems assume a quasi-steady
state inside the gas phase and concentrate solely in the study of interfacial waves on
films that are much more viscous than the gas stream. Consequently, the temporal
term in (2.2) is omitted. When film inertia is important based on parameter M, e.g.
water films, (2.9) describes film motion, whereas for flow of films with negligible
inertia, e.g. many deicing fluids, the lubrication type formulation provided by (2.12) is
employed inside the film. The relevance of the product between viscosity and inverse
density ratio in obtaining the appropriate formulation inside a thin film, lubrication
versus unsteady boundary layer, has also been pointed out by Smith et al. (2003) in
their study of the air cushioning effect during drop impact on a solid wall. In the
latter study it is the air that forms a film which impedes drop impact.

In all cases we perturb the basic solution by introducing a disturbance either on
the interface or on the streamwise velocity in the bulk of the boundary layer:

H (T = 0) = H0(T = 0) + HD, U (T = 0, X, Y ) = U0(X, Y ) + UD, (2.13)

where HD and UD denote the imposed disturbance which can be either instantaneous
or periodic:

HD = d

√
W

π
exp(−WX2), HD = d

√
W

π
exp(−WX2) cos(ωT ), (2.14a,b)

where d corresponds to the magnitude of the disturbance, W defines its range in the
streamwise direction and ω is the dimensionless frequency of the disturbance; W is
set to 4 in the simulations conducted herein. A similar disturbance is used for the
streamwise velocity located at a certain Ȳ location in the boundary layer.

3. Numerical solution
In order to investigate the flow configurations described above, it is crucial to

develop a numerical approach that provides accurate results while at the same time
minimizes the requirements for storage and processing time. The numerical schemes
that are available in the literature employ finite difference (Jenson et al. 1975; Ruban,
1978; Veldman 1981; Tutty & Cowley 1986; Peridier et al. 1991a,b; Cassel et al. 1995,
1996; Tsao et al. 1997; Fletcher 2004), spectral methods (Terent’ev 1981, 1984; Duck
1985) or a combination of the two methods for the solution of the nonlinear triple-deck
equations for incompressible and compressible flow arrangements. In the present study
the finite element method is adopted owing to its better flexibility in capturing moving
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interfaces under quite intense shape variations. Especially when steep waveforms arise,
as will be seen to be the case here, the finite element methodology is expected to behave
better than spectral or finite difference techniques (Gresho & Sani 1998). In the finite
element methodology the basis functions play a central role in optimizing accuracy of
the results. Recently, the development of high-order polynomial basis functions has
received a significant amount of attention as an alternative to the traditional quadratic
Lagrangian polynomials. Cubic and bicubic B-splines have been used in order to
interpolate the unknown shape of an interface in the framework of boundary integral
methodology. Their increased smoothness and accuracy characteristics provided very
reliable representations of the interface for prolonged time integration under severe
external disturbances.

3.1. Finite element methodology

We compared the biquadratic Lagrangian and bicubic B-splines, in terms of
their efficiency as basis functions of the finite element representation of the flow
under examination. It is known that the quadratic Lagrangian basis functions
are polynomials of second order, while cubic B-splines are polynomials of third
order. Interpolations of unknown functions in terms of the former basis functions
only guarantee continuity of the interpolating function whereas the latter allow for
continuous first and second derivatives (Prender 1989). In either case the local two-
dimensional basis functions corresponding to rectangular elements, arise as a result
of tensorial multiplication of the one-dimensional functions in x and y direction:

Nk(x, y) = Li(x)Lj (y) k = 1, 2 . . . 9, i, j = 1, 2, 3, (3.1)

Nk(x, y) = Bi(x)Bj (y), k = 1, 2 . . . 16, i, j = 1, 2, 3, 4, (3.2)

L1(x) =
(2x − xi+1 − xi)(2x − 2xi+1)

2h2
, L2(x) =

(2x − 2xi)(2xi+1 − 2x)

h2
,

L3(x) =
(2x − xi+1 − xi)(2x − 2xi)

2h2
, x ∈ [xi, xi+!], h = xi+1 − xi,

(3.3)

Bi(xj ) =
1

h3

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(x − xi−2)
3, x ∈ [xi−2, xi−1]

h3 + 3h2(x − xi−1) + 3h(x − xi−1)
2 − 3(x − xi−1)

3, x ∈ [xi−1, xi]
h3 + 3h2(xi+1 − x) + 3h(xi+1 − x)2

−3(xi+1 − x)3, x ∈ [xi, xi+1] h = xi+1 − xi,

(xi+2 − x)3, x ∈ [xi+1, xi+2]
0, x /∈ [xi−2, xi+2]

,(3.4)

where Li , Bi denote the local one-dimensional Lagrangian and B-spline basis
functions, respectively, and Nk the local two-dimensional ones. Equation (3.4) applies
for a uniform mesh. Clearly the Bi ’s so defined are twice continuously differentiable,
i.e. C2 continuous. It can also be shown (De Boor 1978) that they are the cubic
splines with the smallest compact support, each of them is non-zero over four
consecutive elements, satisfying C2 continuity. As is well known, the Lagrangian basis
functions satisfy C0 continuity with smaller compact support, i.e. they extend over
two consecutive elements. In figures 1(a) and 1(b) a schematic representation of one-
dimensional and two-dimensional cubic B-splines is provided for the case of uniform
element size. Derivation of the cubic B-splines corresponding to varying element size
distribution is tedious but straightforward (De Boor 1978), hence it is not provided
here. With the Lagrangian biquadratic basis functions the interpolate f̄ of a function
f on a domain that is discretized via a certain sequence of nodes xj is obtained in
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Figure 1. Schematic representation of B-cubic splines in (a) one-dimensional and
(b) two-dimensional; adapted from Prender (1989).

terms of a summation over the products between the function values at the nodes
and the global basis functions that are centred on the specific nodes

f̄ (x) =

2n+1∑
i=1

ciΛi(x) for n quadratic elements, (3.5)

where ci and Λi(x) denote the function values at the 2n + 1 nodes and the
global quadratic basis functions satisfying Λi(xj ) = δij i, j = 1, 2, 3 . . . 2n + 1, where
δ represents the Kronecker delta. When the cubic B-splines are employed over the
same number of elements the interpolate assumes the form

f̄ (x) =

n+2∑
i=0

ciΛi(x) for n elements. (3.6)

Now the coefficients ci are dissociated from the function values, being coefficients
of the spline representation. Two additional coefficients are introduced, c0 and cn+2,
corresponding to two fictitious nodes each located immediately before and after the
interpolation region (x1, xn+1). They are essential in order to satisfy the continuity
requirements of the interpolate function. Four global basis functions survive locally
within each element [xi, xi+1] while three such functions are required to obtain
the interpolation at node xi , as opposed to three local quadratic basis functions
within one element. In order to calculate the unknown coefficients ci of the spline
representation (3.6) two additional conditions are needed, normally setting the first
or second derivative of the interpolated function at the boundaries of the domain
(Prender 1989) to a specific value. As long as the interpolated function is sufficiently
differentiable the quadratic and cubic B-spline representations provide O(h3) and
O(h4) accurate interpolates; h denotes a measure of the element size. These ideas can
be extended to two dimensions in which case the interpolate function reads

f̄ (x, y) =

n+1∑
i=1

m+1∑
j=1

cijMij (x, y) f̄ (x, y) =

n+2∑
i=0

m+2∑
j=0

cijMij (x, y) (3.7)
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for n × m biquadratic and bicubic B-spline elements, respectively, with Mij the
global two-dimensional basis functions in either case. Within each element nine
local biquadratic and sixteen local bicubic B-spline basis functions survive, while on
a certain node a single coefficient is required for interpolating a function with the
biquadratic representation versus a summation over nine neighbouring coefficients
for the bicubic B-spline representation. Thus, the weak formulation of the problem
as described via (2.2a,b) and (2.9a,b) reads

Ȳinf∫
0

X2∫
−X1

Mij

(
μ

μw

∂U

∂t
+ U

∂U

∂X
− ∂Ψ

∂X

∂U

∂Y

)
dX dȲ −

Ȳinf∫
0

X2∫
−X1

∂Mij

∂X
P dX dȲ

+

Ȳinf∫
0

X2∫
−X1

∂Mij

∂Y

∂U

∂Y
dX dY +

Ȳinf∫
0

Mij (Px0
− P−x0

) dȲ

−
X2∫

−X1

Mij

(
∂U

∂Y

∣∣∣∣
Ȳ=Ȳinf

− ∂U

∂Y

∣∣∣∣
Ȳ=0

)
dX = 0, (3.8a)

Ȳinf∫
0

X2∫
−X1

MijU (X, Ȳ ) dX dȲ =

Ȳinf∫
0

X2∫
−X1

Mij

∂Ψ

∂Ȳ
(X, Ȳ ) dX dȲ , (3.8b)

1∫
0

x2∫
−x1

Mij

(
∂u

∂t
+ u

∂u

∂X
+

y − 1

H

∂ψ

∂X

∂u

∂y

)
dX dy −

1∫
0

x2∫
−x1

∂Mij

∂X
P dX dy

+

1∫
0

X2∫
−X1

∂Mij

∂X

1

We

∂2H

∂X2
dX dy +

1∫
0

X2∫
−X1

∂Mij

∂X

(ρw/ρ − 1)

Fr

∂H

∂X
dX dy

+

1∫
0

X2∫
−X1

∂Mij

∂y

1

H 2

∂u

∂y
dX dy +

1∫
0

Mij (Px0
−P−x0

) dy −
1∫

0

Mij

1

We

(
∂2H

∂X2

∣∣∣∣
x0

− ∂2H

∂X2

∣∣∣∣
−x0

)
dy −

X2∫
−X1

Mij

1

H 2

(
∂u

∂y

∣∣∣∣
y=1

− ∂u

∂y

∣∣∣∣
y=0

)
dX = 0, (3.9a)

1∫
0

X2∫
−X1

Miju(X, y) dX dy =

1∫
0

X2∫
−X1

Mij

1

H (X, t)

∂ψ

∂y
(X, y) dX dy (3.9b)

in the gas and liquid phase, respectively. In the following k denotes the total number
of nodes in the domain discretization consisting of n by m elements in the x and y
directions; k =(2n + 1)(2m + 1) for biquadratic Lagrangian and (n + 3)(m + 3) for
bicubic B-splines, respectively. All the unknown functions are approximated in the
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standard finite element fashion:

U
(
X, y, t

)
=

k∑
i=1

ai(t)Mij

(
X, Ȳ

)
, Ψ

(
X, Ȳ , t

)
=

k∑
i=1

bi(t)Mij

(
X, Ȳ

)
,

u
(
X, y, t

)
=

k∑
i=1

ci(t)Mij

(
X, y

)
, ψ

(
X, y, t

)
=

k∑
i=1

di(t)Mij

(
X, y

)
,

P (X, t) =

n∑
i=1

ei(t)Λi(X), A(X), t =

n∑
i=1

fi(t)Λi(X), H (X, t) =

n∑
i=1

gi(t)Λi(X).

(3.10)

It should be noted that a staggered mesh is not required for the pressure in this
case since it is not associated with the constraint of mass continuity. The pressure
is evaluated via the integral equation (2.4) involving the displacement thickness. The
latter is discretized in the X direction and evaluated using Gaussian integration with
X running from −X1 to X2, for the pressure values at a certain Xi position. The
singularity at Xi = s is thus removed as s approaches Xi from left and right (Veldman
1981). The far field condition where the lower and middle decks merge (defined in
(2.5)) provides the boundary condition for the longitudinal velocity in the gas phase
as well as an extra condition setting the displacement thickness. Finally, the kinematic
condition (2.8) is employed in order to solve for the location of the interface. It is
discretized using the finite element methodology

X0∫
−X0

Λi(X)
∂H

∂t
dX +

X0∫
−X0

Λi(X)
∂ψ

∂X
dX = 0; (3.11)

i = 1, 2 . . . 2n + 1 for n biquadratic and i = 1, 2 . . . n + 3 for n bicubic elements.
Continuity of the longitudinal and normal velocities as well as the shear stress

at the interface (defined in (2.6a,b) and (2.7a)) are employed in order to connect
the velocity field in the two phases, while continuity of the normal stress is used in
order to eliminate liquid pressure. The non-slip non-penetration conditions (2.11) are
imposed on the flat plate.

The same procedure is applied when the film viscosity is much larger than the
viscosity of the gas, μ/μw → 0. The only difference is that a quasi-steady state is
assumed in the gas phase and as a consequence the local acceleration term is dropped
out of (3.8a). Finally, in the special case where M → 0, we introduce the one-
dimensional basis functions and thus the weak formulation of (2.12) assumes the form:

x0∫
−x0

Λi

dH

dt
dX =

x0∫
−x0

(
dΛi

dX

H 2

2

∂U

∂Y
− dΛi

dX

H 3

3

∂P

∂X

)
dX−

x0∫
−x0

(
d2Λi

dX2

H 3

3We

∂2H

∂X2

)
dX

−
x0∫

−x0

(
dΛi

dX

H 2

We

∂H

∂X

∂2H

∂X2
− dΛi

dX

H 3

3

ρw/ρ−1

Fr

∂H

∂X

)
dX+

[
dΛi

dX

H 3

3We

∂2H

∂X2

]x0

−x0

−
[
Λi

H 2

2

∂U

∂Y

]x0

−x0

+

[
Λi

H 3

3

∂P

∂X

]x0

−x0

−
[
Λi

H 3

3We

∂3H

∂X3

]x0

−x0

+

[
Λi

H 3

3

ρw/ρ−1

Fr

∂H

∂X

]x0

−x0

,

(3.12)

where i = 1, 2 . . . 2n + 1 for n quadratic and i = 1, 2 . . . n + 3 for n cubic elements.
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3.2. Time integration

The fourth-order Runge–Kutta (RK) time integrator and the trapezoidal rule were
employed for the discretization of time derivatives. The former approach is explicit and
consequently resulted in relatively small time steps in order to maintain numerical
stability. The additional requirement of the RK method for internal time steps,
accompanied by upgrades of the system matrix to be inverted, further intensifies the
computational load. Consequently the trapezoidal rule was selected as the optimal
choice for time integration. The fact that it is less accurate than the RK method does
not affect the overall accuracy of the solution since the time step has to progressively
decrease significantly anyway, in order to accommodate the abrupt spatial variation of
the solution in the main direction of the flow. Therefore, spatial resolution in regions
of excessive film growth controls computational cost. When the unsteadiness of the
motion in the gas phase is accounted for, in order to capture the development of TS
waves, the pressure and velocity fields in the two phases along with the film location
are solved for simultaneously (defined in (2.2)–(2.11)). When a quasi-steady state is
assumed for the gas phase, which is indeed the case when the liquid occupying the film
is much more viscous than the gas (μ/μw → 0), then the time stepping procedure is
heavily dependent on the importance of film inertia. For relatively heavy films, M< 1
but not vanishing, the velocity field in the film along with the location of the interface
have to be updated at the same time via time integration of (2.8) and (2.9). When
film inertia is negligible, M → 0, time stepping is performed on (2.12) only, involving
the spatiotemporal evolution of the film thickness. In the last two cases a separate
inversion takes place in the gas phase in order to obtain the velocity, pressure and dis-
placement thickness fields for given location of the interface. The three cases described
above involve progressively smaller numerical effort in terms of the size of the matrix
that needs to be inverted at each time step. This process is formally described as

Cij ẋj = Fi(x)
trapezoidal−→

rule
Cij

xn
j − xo

j

�t
− Fi (xn) + Fi (xo)

2
= Ri = 0, (3.13)

where x is the unknown vector, Cij is the mass matrix, superscripts n and o stand
for the old and new time step, respectively, and Ri is the residual vector that
incorporates nonlinear contributions. The residual vector becomes vanishingly small
for the appropriate values of the unknown vector. The latter are obtained through
the Newton–Raphson iterative process

Aij

(
xn,k

j − xn,k+1
j

)
= Ri(xn,k), Aij =

Cij

�t
− 1

2

∂Fi

∂xn,k
j

, (3.14)

where Aij denotes the Jacobian vector and k is the Newton’s iterations count. When
the flow in the gas phase is solved for separately, assuming a quasi-steady state, the
mass matrix is absent and the Jacobian matrix only involves derivatives of right-hand
side Fi (x) with respect to the unknown vector xk .

In the context of this study, it was seen that the most time consuming step during
the numerical simulation is the inversion of the Jacobian matrix Aij . In particular, it
was estimated that the inversion of matrix Aij consumes approximately 95 % of the
total computational time needed to perform one time step. It should be stressed that
direct inversion of matrix Aij was not employed for the solution of matrix problem
(3.14). Rather an iterative approach, in particular, generalized minimum residual
(GMRES) method was opted for, as will be discussed in § 3.4. Therefore the term
matrix inversion is used in the following in order to signify solution of a matrix
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problem of the type Aijxj = bi . In an effort to reduce computational cost as much
as possible, we avoid constructing and inverting the Jacobian matrix in each time
step. This action is based on the fact that we use considerably small time steps in
which case the Jacobian is not expected to change significantly between subsequent
time intervals. The only disadvantage of this approach is that Newton–Raphson loses
its quadratic convergence and consequently the number of iterations may increase.
Nevertheless, it was seen that the gain in computational time considerably exceeds the
extra cost engendered by the additional iterations. The exact number of time steps
over which the Jacobian can be taken as constant varies and it depends on the rate
of evolution of the phenomena captured by the simulation. The specific number was
obtained as part of a trial and error process. At the most, a maximum of 500 time
steps was seen to be afforded by the algorithm without updating the Jacobian.

3.3. Boundary conditions

Besides the selection of the appropriate basis functions, imposition of proper boundary
conditions plays an important role in the numerical solution. In the flow that we
examine there is upstream influence that is introduced via the interaction law (2.4). If
we use B-splines as basis functions we must introduce additional nodes and therefore
additional equations to the problem. The fact that we do not know exactly what is
happening at the right end of the simulation area may cause additional feedback that
does not exist in reality. We can avoid this problem by using either free boundary
conditions at the right end of the simulation area or periodic boundary conditions for
all variables in the direction of flow. The free boundary condition is an equation that
constrains the spline coefficients at one end without assigning a particular value for
the variable. It is obtained if we equate the description for the first derivative of the
variable based on its spline representation with the finite difference approximation
of the derivative based on nodal values obtained via the spline representation. This
is a common practice in the spline literature for obtaining constraints on the spline
coefficients near a boundary (Prender 1989) in the absence of reliable end conditions.
Alternatively, in order to avoid feedback influence we can use periodic boundary
conditions for all variables in x direction. The extent of the simulation interval in the
Y direction, Y ∞, is chosen so that the second partial derivative of velocity in the upper

end of the simulation area approaches zero, ∂2U

∂Y
2 |Y→∞ → 0. To this end the numerical

solution is monitored at regular time intervals. When the displacement thickness
increases significantly, due to film growth and onset of recirculation, the location of Y ∞
is moved further away from the plate in order to accommodate the above condition.

3.4. Description of algorithms

In this subsection we present an outline of the algorithms that have been employed
in order to solve the problem numerically. As a starting point, at t = 0 a disturbance
is imposed on the gas–liquid interface. When a quasi-steady state is considered in
the gas phase, based on the disturbed interface, the flow in the gas phase is solved
separately in order to furnish the shear stress and pressure distribution exerted on the
liquid film as a result of the displaced flow in the gas phase, i.e. (2.2)–(2.5), without
the temporal term in the x -momentum. Due to the nonlinearity of the problem
the Newton–Raphson method is employed as described in § 3.2. With the updated
values for shear stress and pressure distribution we solve the problem in the film and
calculate the velocity field and shape of the interface, i.e. (2.6)–(2.11). When the film
inertia is negligible, (2.12) is advanced in time in order to solely update the position
of the interface. In both cases the trapezoidal rule is used for temporal integration
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and the interfacial position is then used as an input for the problem in the gas phase.
Depending on the slope and curvature distribution of the new interfacial position the
longitudinal distribution of mesh points is adapted. The sequential solution of the
problems in the gas and liquid phase is continued for as long as necessary in order to
capture the dynamic behaviour of the system.

A similar algorithm is applied when we solve the overall problem in order to study
interfacial waves in the presence of TS. The only difference lies on the fact that
the solution of the two phases is done simultaneously. Consequently, following the
initial interfacial disturbance at t = 0, the velocity and pressure fields along with the
interfacial position are updated in a coupled fashion through time integration of (2.2),
(2.8) and (2.9), subject to conditions (2.3)–(2.7) and (2.10)–(2.11). The time integration
is advanced in this fashion for a time duration necessary to capture the advancement
of TS waves and their interaction with the interfacial waves. As will be seen in § 4, due
to the very fast evolution of the former waves, especially as the ratio μ/μw decreases,
they reach the right end of the computational domain before any significant variation
of the position of the interface is observed. Since interaction between the two types
of waves is a central goal of the present study, time integration cannot proceed
further unless the domain is extended considerably. However, as the two types of
waves will have evolved quite apart with time their interaction will rapidly become
very weak. Thus, as an alternate approach the transient evolution of the gas phase,
and consequently of TS waves, is turned on after an amount of time necessary for
significant growth of interfacial waves to have taken place. More details are provided
in § 4 dedicated on the discussion of numerical results for gas-film interaction.

Besides lagging the updating of the Jacobian, in order to further reduce
computational cost the linearized system (3.14) that has to be solved at each
Newton iteration is treated iteratively with the GMRES method rather than by
direct inversion (Saad & Schultz 1986). Preconditioning is done using incomplete
lower–upper factorization (ILU). ILU is based on Gauss elimination in a fashion
that eliminates a certain number of elements in specific positions outside the main
diagonal.

The final step in our effort to reduce computational cost is based on the fact that the
disturbances under consideration do not cover the entire domain in the longitudinal
direction. Thus, in order for the simulation to provide the desired accuracy, grid
refinement need only be confined in regions where the disturbances appear at a
certain time instant. As a result, the load in computational time as well as storage is
significantly reduced. Moreover, due to the convective character of the disturbances
the grid must be adapted in order to follow the evolution of the waves. The method
that is employed in order to construct the adapted mesh is based on the redistribution
of grid nodes via an appropriate weight function w(X). In this fashion, the grid
becomes dense only in the areas where the weight function is large. The following
equation is thus obtained that can be used to calculate the new grid:

Xi∫
0

w(χ) dχ =
i − 1

N − 1

L∫
0

w(χ) dχ, i = 2, 3, . . . N − 1, w(X) = (1 + d|hX| + b|hXX|),

(3.15)

where hX = ∂h/∂X, hXX = ∂2h/∂X2 and h denotes the shape of the interface.
Coefficients b and d correspond to the influence that interfacial slope and curvature
bear on the desired grid density. Their values vary between 0 and 1. Additional
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Wave length 2.3
Period 0.8
Group velocity 4.5

Table 1. Results of linear theory for the most unstable wave of TS waves at x = 1.

information regarding one-dimensional grid adaptation as well as criteria for choosing
the appropriate weight function can be found in Thompson, Warsi & Mastin (1995).

3.5. Numerical validation for interaction with a solid obstacle

In order to compare the effectiveness of quadratic Lagrangian and cubic B-splines
as basis functions we simulate the flow of air above a flat plate in the case of an
instantaneous linear disturbance on the longitudinal velocity of the type shown in
(2.14a), d = 0.001 and W =4, that is imposed at longitudinal and transverse positions
x = 1 and Ȳ = 2; Ȳ∞ =8. Our aim is to capture the characteristics of TS waves as
close as possible to the theoretical predictions based on the linear dispersion relation
(Lin 1946; Smith 1979a) and to the findings of numerical simulations in the nonlinear
regime (Duck 1985; Smith & Burggraf 1985):

dAi

dz
+

(
kH 2

0 C
)1/3

A2
i1/3kH0

z∫
∞

Ai(t) dt = 0, z = − H0ωi1/3(
kH 2

0 C
)2/3

, C(x) =
x1/4

√
0.664

H0(x)

(3.16)

with k and ω denoting the wavenumber and frequency of the wave, respectively, and
H0(x) the base flow film thickness provided in (2.1). The problem formulation is the
same as the gas phase formulation outlined in (2.2)–(2.5), with the position of the
interface set to zero and the no-slip no-penetration boundary conditions imposed on
the flat plate. In order to eliminate the dependence on variable x from the Blasius
solution we introduce the following transformed variables (Jenson et al. 1975; Ruban
1978; Terent’ev 1981, 1984; Smith & Burggraf 1985; Ryzhov & Terent’ev 1986):

T

b−3/2
→ T ,

X

b−5/4
→ X,

Ȳ

b−3/4
→ Ȳ ,

U

b1/4
→ U,

Ψ

b−1/2
→ Ψ,

P

b1/2
→ P,

A

b−3/4
→ A, (3.17)

where b = ∂U0/∂y (x, y = 0) = 0.332/
√

x, is the Blasius shear stress evaluated on the
plate with y = y ′/LRe−1/2. Estimates of the wavelength 2π/k, period 2π/ω and group
velocity dω/dk of the most unstable wave are given in table 1, as derived from linear
stability analysis.

First, we solve the problem by using quadratic Lagrangian basis functions. What
we observe is that this procedure fails to give reliable results. More specifically, the
resulting wavelength depends on the spatial interval dX and is always approximately
equal to 4dX. In figure 2 the displacement thickness is shown for dimensionless
longitudinal step size �X =0.5 and 0.25 and a time step �t = 0.001, whereas in
table 2 the numerically calculated wavelengths of the disturbance are given for three
different mesh sizes. The frequency and wavelength of the disturbance are extracted
from the numerical solution via FT the displacement thickness A, profile evaluated
either at a certain time instant T0, or at a certain longitudinal position X0, that are
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Figure 2. Displacement thickness for the TS waves with mesh size: (a) �X = 0.5 and (b)
�X = 0.25, using Lagrangian basis functions; �T = 0.001.

Spatial interval �X 0.5 0.33 0.25
Wavelength 1.78 1.33 1

Table 2. Computed wavelength of the most unstable wave for TS waves by using quadratic
Lagrangian basis functions.

Spatial step �X 0.5 0.33 0.25
Wavelength 2.2 2.2 2.2
Period 0.83 0.83 0.83
Group velocity 4.6 4.6 4.6

Table 3. Computed attributes of the most unstable wave for TS waves by using B-cubic
splines as basis functions.

quite large so that asymptotic linear growth is established. For example,

A(X0, T ) =

n=N/2∑
n=−N/2

cn(X0)e
i 2nπ

TL
T
, cn =

1

TL

TL∫
0

A (X0, T ) e
−i 2nπ

TL
T

dT , N�T = TL,

(3.18)

where TL is the time interval over which the transform is taken and X0 is the
longitudinal position that is sampled. The wavelengths are obtained in a similar
fashion. The maxima of the Fourier spectra, max1�n�N/2 |cn|, are registered and are
associated with the appropriate time or length scales, ωn = 2nπ/TL, kn =2nπ/L.
The x -coordinate in the FT spectra to be presented in the following denotes the
frequency, ν = 1/TP or ν = 1/�, corresponding to the period or wavelength associated
with a certain peak. The group velocity uG is calculated simply by locating the
absolute maxima of the travelling wave packet, X1m, X2m, corresponding to the
wave with the largest growth rate at two different time instants, T1, T2, such that
Xim � 2π/kn and Tim � 2π/ωn for i = 1, 2, and performing numerical differentiation;
uG = (X2m −X1m)/(T2m −T1m). Even though this is a rather simplistic way of obtaining
the group velocity it provides quite reliable estimates as will be seen in the following.

Then we repeat the calculation by using B-cubic splines as basis functions. In this
case we find that the results are accurate to almost the third significant digit and do
not depend on the spatial step. Table 3 illustrates this fact for the same mesh sizes that
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were used in the simulations with quadratic Lagrangian basis functions. Clearly, the
results for the wavelength, period and group velocity are grid independent and agree
with the results of linear theory given in table 1. Figure 3 reproduces the displacement
thickness for the cases shown in figure 2, indicating pointwise convergence with mesh
refinement. The convectively unstable nature of the TS waves is also recovered, as
indicated by the travelling wave packet characterizing the spatiotemporal evolution of
the displacement thickness. The wave-packet characteristics, i.e. group velocity, period
and wavelength of the most unstable waves, are also in very good agreement with
previous calculations in the linear regime performed by Ryzhov & Terent’ev (1986),
via a Fourier–Laplace transform in space and time. The superior behaviour of cubic
splines is due to the fact that they are of higher order than quadratic Lagrangian
basis functions. Moreover, they have continuous first and second derivatives, they are
characterized by non-local support, i.e. each global B-spline extends over four rather
than two consecutive elements, and that amounts to an inherent smoothing effect
on the interpolated unknown functions. The inefficiency of quadratic Lagrangian
basis functions to keep up with the B-splines in problems involving large interfacial
distortions has been observed in other contexts as well, e.g. in the study of the
dynamics of bubbles and drops in both axisymmetric and three-dimensional flow
domains (Pelekasis et al. 1992; Lac et al. 2004).

Having chosen the appropriate basis functions we proceed to test the numerical
code in a case of airflow above a small unsteady hump. We consider the hump that
Duck (1985) used in his study of laminar flow over unsteady obstacles, where he was
able to capture the nonlinear evolution of TS waves. Using the triple deck scales, the
exact shape of the hump reads as

F (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

h
sin(t/β2)

1 + x2
, 0 < t < πβ2/2

h
1

1 + x2
, t > πβ2/2

, β =
U 1/2

o

ω1/2L1/2Re−1/8
, (3.19)

where h is a measure of the size of the obstacle and β is associated to the dimensionless
oscillation frequency of the hump; β ≈ 0.66 corresponds to neutral disturbances in
the lower TS branch whereas disturbances with β < 0.66 excite unstable modes.
The governing equations are (2.2)–(2.5) with μ/μw set to one and the standard
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no-slip no-penetration conditions imposed on the hump. The motion of the obstacle
is prescribed so that it contains an initial start-up process followed by a steady shape.

Figure 4 shows the spatiotemporal evolution of the displacement thickness in the
case of a hump with h = 0.1 and β =1. The presence of the hump disturbs the flow
and, even though β = 1 lies within the range of stable disturbances, the disturbed
spectrum initially contains all the wavelengths out of which the fastest growing
TS wave eventually dominates through linear growth. The small indentation in the
displacement thickness profile behind the travelling wave packet is a signature of the
shape of the obstacle after the oscillatory start-up process is over. Overall, for fixed
X, as time increases oscillations die out leading to a steady state. The wavelength
dominating the wave packet is found to be 2.45, while the numerical group velocity
is equal to 4.3. These results are in agreement with the predictions of linear theory in
table 1 and previous linear calculations (Ryzhov & Terent’ev 1986). As the dominant
wave packet further evolves in time it does not exhibit any sideband instabilities.
However, more unstable modes become evident forming secondary wave packets of
smaller amplitude, clearly shown in figure 4(f ), corresponding to greater wavenumbers
and higher frequencies. The FT of the displacement thickness at appropriately selected
time and spatial locations verify the relevant length and time scales (figures 4g and
4h). The mechanism underlying growth of such modes is not clear. It should be
stressed that during the late stages of the phenomenon the amplitude of the leading
wave packet is large enough for nonlinear growth to take place. According to the
dispersion relation of the TS waves, large wavenumbers belong to the unstable
regime and consequently they gradually grow with time. Weakly nonlinear analysis
and simulations of the development of high frequency TS waves performed by Smith
(1986) indicate growth and spreading of the dominant wave packet during the initial
stages and broadening of the wavelength spectrum and spiked behaviour during the
late stages of their development due to vorticity bursts from the viscous sublayer.
The latter process is significantly enhanced by nonlinearity. As an additional reason,
the short-wavelength wave packets shown in figure 4 may arise due to the non-local
nature of the moving obstacle instigating the motion. Such wave packets were not
obtained in the present study when the initial disturbance was of the form of a delta
function in space. Such a behaviour is observed in numerical solutions of Schrodinger’s
equation that is known to give rise to travelling wave packets upon imposition of a
disturbance that is not sufficiently localized. It should be pointed out, however, that
local convergence was not obtained upon mesh refinement of the simulations presented
in figure 4. This may be due to the very small wavelength of the emerging structures
that reduces the accuracy of the simulations. Numerical simulations performed by
Cassel et al. (1995, 1996) on supersonic flow over a compression ramp via the
interactive boundary layer formulation, produced a stationary wave packet as a result
of an absolute instability of the boundary layer that is associated with an inflection
point in the streamwise velocity profile. This occurred beyond a threshold value of
the ramp angle and inside the recirculation region of the ramp. Upstream of the
stationary wave packet the simulations produced additional oscillations in cases of
strong wall cooling, for which the wall shear develops a very steep slope ahead of the
separation region. More accurate simulations recently performed by Fletcher et al.
(2004) showed that such oscillatory behaviour is entirely a numerical artefact arising
due to the steep change in the wall shear. We believe that this is probably not the case
here since such steep changes only appear in the flow field during the very late stages
of the evolution of the dominant wave packet and manifest themselves in the form
of spikes in the displacement thickness in figures 4 and 5. The latter is an effect that
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is theoretically predicted to eventually appear in the evolution of TS wave packets
(Smith 1986, 1988) whereas the onset of oscillatory behaviour in the simulations takes
place at an earlier stage. Additional mesh refinement was not pursued in the present
study since its focus lies in a different form of interaction.

A similar behaviour is observed as the amplitude of the hump pulsation grows.
We have used humps with obstacle size h ranging between 0.1 and 2 and we have
confirmed the fact that the disturbance amplitude primarily affects the time needed
for the secondary modes to develop. The greater the amplitude is, the sooner the most
dangerous wave grows. Figure 5 illustrates this pattern for flow above an unsteady
hump with maximum amplitude 2, also indicating a steady state solution for flow
over the steady form of the obstacle as time increases. Eventually the simulations have
to stop due to growth of progressively smaller waves that are too difficult to capture
by the available discretization. During the late stages of the phenomenon the leading
wave packet tends to exhibit spiked behaviour and singularities in the displacement
thickness and pressure distribution in the manner discussed in the previous paragraph.

4. Results and discussion for interaction with a liquid film
4.1. Growth of Tollmien–Schlichting and interfacial waves

In this section we first address the full problem of a boundary layer interacting with
a thin film, in the sense that not only are inertia effects accounted for in the film
but also we allow for transient effects to take place in both phases. This allows for
coinstantaneous growth of TS and interfacial waves. The study focuses on the cases
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of a water film or a film of de/anti-icing fluid being dragged by a boundary layer
of air, which sets the viscosity ratio μ/μw to relatively low values. Properties for the
latter system are obtained from Ozgen et al. (1998) and Hendrickson & Hill (1987),
μ/μw = 1.67 ·10−6 and ρ/ρw =0.001, while a flow arrangement characterized by a test
section of length L ≈ 30 cm and a free stream velocity U∞, ranging between 10 and
40 m s−1 is envisioned as it covers a wide range of available experimental
investigations. In this context, when L ≈ 30 cm and U∞ ≈ 30 m s−1 Fr = 92 699, 3.94 ·
104 and We = 46 59.88 for the cases of water and deicing fluid respectively. The film
thickness necessary for the triple-deck approach to be valid is Hf ∼ LRe−5/8 ≈ 0.06 mm
which is on the order of film measurements on airfoils under simulated rainfall
conditions. The mesh characteristics in the bulk of the simulations are �x =0.2,
�y = 0.4, �t = 0.001, Y∞ =10. Simulations with �x = 0.1 and �y = 0.2 were
conducted as well in order to capture effects related with film inertia that leads
to smaller wavelengths and more intense recirculation patterns, but also to validate
the results via mesh refinement. Two different types of disturbances are employed,
namely impulsive and time periodic. The location of the disturbance in the context
of the base flow is determined through parameter x0 and normally refers to (2.1a)
pertaining to the case of rainfall. The results exhibit negligible variation if the case
of constant flow rate is selected (defined in (2.1b)), since it is primarily the shear
rate λ= ∂U0/∂Y ′ (x0, Y

′ =0) = 0.332/
√

x0 and film thickness H 0 that affect the flow
stability and they are comparable in either case. The former parameter does not vary
between the two base solutions, provided x0 is the same. The film thickness H0, on the
other hand, may be different. The choice between the two base flow arrangements,
(2.1a) versus (2.1b), can play a role in the investigation of global instabilities but, as
will be seen in the next subsection, such phenomena are subdominant to the growth
of the most unstable wave in the nonlinear regime. Unless otherwise specified these
are the attributes of the numerical simulations to be presented in the following.

As a preliminary test we consider the case of a water film upon the interface of
which an initial disturbance is imposed at x0 = 1, characterized by amplitude d =0.001
and initial film thickness H0 = 2.45. Owing to the small amplitude of the disturbance
linear theory describes the onset of the motion. Figure 6(a) portrays the shape of
the interface at time t = 0.6, and it can be clearly seen that before the interfacial
wave exhibits any significant growth the TS waves have already been formed and
reached the right end of the simulation grid. Their signature on the location of the
interface is not significant but is still detectable. The evolution of the TS waves can
be better observed in graph of figure 6(b) showing the displacement thickness in the
gas phase. By performing FT analysis on this signal we can calculate the wavelength
of TS waves which is equal to 9.3. Similarly the period of the TS waves is recovered,
TT S =0.07, by registering the time series of the displacement thickness at a certain
X position (figure 6c). The graphs verify the convectively unstable nature of the
TS waves. It should be stressed that upon application of transformation (3.17) with
x = 1 the values provided in table 1 are recovered. The group velocity, uG = 195, is
obtained in the manner explained in the previous section via the absolute maxima of
the travelling wave packet. All the aforementioned quantities are in agreement with
the predictions of linear analysis for TS waves as they evolve either on their own,
(4.1), or coupled with a liquid film (Timoshin 1997; Pelekasis & Tsamopoulos 2001).
Both types of stability analysis furnish similar results due to the small viscosity ratio,
μ/μw = 0.018, indicating convective instability as the mode for growth of the unstable
waves. Moreover, the growth of the interfacial waves is unaffected by the much faster
growth of the TS waves, as will also be illustrated in the following.
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interface at x =1 with d = 0.001: (a) shape of the interface at t = 0.6, (b) displacement
thickness profile at t = 0.6 and (c) time series of the displacement thickness at X = 50.

As a second test we set the same disturbance on the interface while maintaining the
quasi-steady state in the gas phase. Thus, we allow the interfacial waves to develop
up to a certain point in time, i.e. T = 6. Then at that particular time we impose a
small disturbance, d = 0.001, on the axial velocity in the bulk of the boundary layer
(X = 0, Y = 2). At the same time we activate transient effects inside the boundary
layer. In this fashion, we can monitor the development of TS waves after interfacial
waves have been formed and therefore explore the possibility of interaction between
them. Figures 7(a) and 7(b) depict the shape of the interface before we impose the
disturbance in the gas phase at T = 6, and the time series of the interfacial position
at X = 10, respectively. Performing FT on these graphs we obtain the relevant space
and time scales of the growing wave; the period Tin = 2.8 is while the wavelength
lin = 3.2. They both conform to the findings of linear analysis for growth of interfacial
waves due to shear from a surrounding boundary layer (Timoshin 1997; Pelekasis
& Tsamopoulos 2001). The group velocity is also estimated, uG =1.4, in agreement
with linear theory, thus concluding that the wave packet illustrated in figure 7(a)
corresponds to the fastest growing interfacial wave. It should be stressed, however,
that according to linear theory interfacial waves of the air/water system are absolutely
unstable in this parameter range. According to linear theory, the fastest growing wave
is expected to appear in an absolutely unstable wave packet, which will contain waves
with zero group velocity. In the present case the linear growth of this particular wave
is marginal as compared to the most unstable one, hence the former occupies the
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left-most part of the interfacial wave packet. This is manifested in figure 7 by the
fact that the interfacial wave packet never quite leaves the origin of the x -axis which
is also the location of the imposed initial disturbance. This issue will be elaborated
in the next subsection where it will be seen that this pattern is generally true for the
air/water system.

Figures 7(c) and 7(d ) show the shape of the interface at T = 6.6 without and with
the imposition of the disturbance in the bulk of the boundary layer. Clearly the
appearance and growth of TS waves does not affect the evolution of the interfacial
waves, as the two shapes are identical and conform to the evolution of the most
unstable wave packet according to linear theory. In fact, not much has happened on
the interface in the time interval between T = 6 and 6.6. On the contrary the TS waves
have evolved quite significantly in this time frame as can be gleaned from figures 7(e)
and 7(f ) depicting snapshots of the displacement thickness at these two time instants.
In figure 7(e), shortly after the transient effects are turned on in the gas phase, an
interesting superposition of different wave packets is depicted in the profile of the
displacement thickness. More specifically, the signature of the wave packet pertaining
to the interfacial wave is illustrated on the left. It is dominant at this time instant,
since the TS waves have not yet had enough time to evolve, yet it appears as a fixed
obstacle since its group velocity is much smaller than that of the TS waves. Ahead of
the interfacial wave two more wave packets are exhibited in figure 7(e) corresponding
to the TS waves generated in the gas phase in response to the oscillating interface and
to the fastest growing TS wave. The former TS waves move at a larger group velocity
hence they are ahead of the fastest growing wave, but they grow at a slower rate. The
wavelength of this wave packet is the same as the wavelength of the interfacial wave
only it moves much faster. It is smaller than the wavelength of the fastest growing TS
wave and, as predicted by the dispersion relation of the TS waves, it is also unstable.
It should be stressed that the period of oscillation of the interfacial wave, Tin = 2.8, is
much larger than the one of the most unstable TS wave, TP =0.07. Thus, the leading
wave in figure 7(e) is equivalent to the wave packet that is formed when a boundary
layer interacts with a stationary grooved boundary characterized by the wavelength
of the interfacial wave. It is a result of the deviation of the shape of the interface
from the classical pulse-like shape, as the non-local nature of the former leads to the
formation of additional wave packets. Similar wave formation has been observed in
earlier studies on the effect of oscillating obstacles on the development of TS waves
(Duck 1985). Performing an FT on the profile shown in figures 7(e) and 7(f ) recovers
the relevant length scales, figures 7(g) and (7h), verifying the above picture. At time
T = 6.6 the most unstable wave has fully evolved and surpassed in amplitude the
interfacial wave while it has reached the right end of the computational domain. The
wave packet corresponding to TS waves growing in response to the deformation
of the interfacial wave has already exited the domain due to its larger group
velocity, without ever reaching the level of amplitude exhibited by the fastest growing
wave.

Nevertheless, the appearance of this wave packet may explain observations of
transition to turbulence in the presence of viscous films that is dominated by smaller
wavelengths than the ones corresponding to the most unstable TS wave. In fact,
as pointed out elsewhere (Timoshin 1997) setting the density ratio to one while
maintaining a low viscosity ratio reduces the wavelength corresponding to maximum
growth rate of TS waves thus bringing about the possibility of identical dominant
wavelengths for the two types of instabilities, for the appropriate value of surface
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tension. Figure 7(e) indicates this tendency for the two leading TS waves to merge and
form one wave that will grow much faster than the classical TS wave. The onset of
TS waves is expected to become quite abrupt when ρ/ρw approaches unity, in which
case the wavelengths for maximum growth of the interfacial and TS waves become
almost identical. It should also be pointed out that, perhaps, such a coincidence in
wavelengths is not imperative for bypassing the classical root to turbulence since even
when they are not so close in magnitude, as is the case for the air–water system,
there is an identifiable TS wave dominated by the wavelength of the interfacial
waves. Depending on the dynamics of that particular wave and its susceptibility to
three-dimensional disturbances transition to turbulence may occur much faster than
expected.

Finally, it should be stressed that increasing the amplitude of the initial disturbance
does not alter the above picture, apart from reducing the time scale over which the
relevant phenomena evolve. Examining the case with de/anti-icing fluids interacting
with air only accentuates the above effects owing to their much larger viscosity.

4.2. Evolution of interfacial waves in the limit of small viscosity ratio, μ/μw � 1

Due to the very disparate time scales governing the development of the interfacial
and TS waves, when the film consists of water or de/anti-icing fluid, we focus on the
limiting case of negligibly small viscosity ratio, μ/μw → 0, and consequently assume
a quasi-steady state in the gas phase. Based on the discussion in the first part of § 4
this is a well-justified assumption, for systems characterized by small viscosity ratio,
which essentially allows us to decouple the development of interfacial waves from
that of the TS waves.

4.2.1. Response in the linear regime

As a first step we want to cross-check the validity of our numerical methodology
against linear theory as time advances, in response to small-amplitude disturbances.
As a starting point we consider the special case for which parameter M → 0 and
consequently inertia forces in the liquid film are negligible. This is the case when
the liquid is much more viscous than the gas, to the extent that the viscosity ratio
dominates the typically large density ratio ρw/ρ, which is especially true for most
de/anti-icing fluids. To this end we consider the flow of air above a deicing fluid
that has been observed experimentally (Hendrickson & Hill 1987) and studied via
linear stability analysis (Yih 1990; Ozgen et al. 1998) in order to obtain the relevant
space and time scales. The parameters of the above experiment are used only as an
example of a real case of a deicing fluid and there is no intention to further examine
the experimental results since it was shown by Ozgen et al. (1998) that the waves
observed in the experiments are TS waves. We choose an initial dimensionless height
H0 = 2.076 and shear rate λ=0.371, corresponding to a film thickness at the base
state Hf ≈ 0.15 mm and an initial disturbance imposed at x0 = 0.8 on the plate. Much
larger film thicknesses were measured by Hendrickson & Hill 1987, e.g. on the order
of 1 mm, yet we decided to use a lower value in order to justify dropping inertia
effects. We introduce an impulsive linear disturbance (d = 0.001) and calculate the
characteristics of the resulting wave. According to linear theory for the above set of
parameters the dominant interfacial instability is convective. This is determined by
examining the linear dispersion relation for interfacial waves in the limit of negligible
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Linear theory with and Numerical results with
without inertia and without film inertia

Wavelength 3.47 3.53
Period 2.32 2.34
Group velocity 2.2 2.26

Table 4. Most unstable wave characteristics for interfacial waves of the air deicing system
predicted analytically and computed numerically with the two different models, with and
without inertia effects; x0 = 0.8, H0 = 2.076.

inertia effects, M → 0 (Timoshin 1997; Pelekasis & Tsamopoulos 2001):
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The motion of the dominant wave packet is clearly illustrated in figure 8 depicting
snap-shots of the interface. Table 4 provides the characteristics of the dominant wave
as obtained via FT of the numerically calculated interfacial position and predicted
by linear stability analysis, indicating very good agreement. One can also note the
progressive spreading of the advancing wave packet predicted by linear theory. In fact,
the speed by which the left and right fronts of the wave packet move is indicated in
figure 8, by means of the corresponding rays emanating from the origin and following
the left and right edges of the wave packet, and correlates well with the prediction of
linear theory.

Regarding the quality of the numerical solution figure 8(f ) illustrates an interesting
phenomenon. As time evolves an additional wave packet appears at the left end of
the computational domain and is convected downstream. Performing FT in a region
around it we confirm that it also possesses the attributes of the most dangerous
wave in terms of wavelength period and group velocity provided in table 4. It is a
result of the truncation of the flow domain, which is really infinite, and corresponds
to the response of the flow field to an impulsive disturbance of infinitesimally small
amplitude at the left end of the computational domain. As we follow it downstream it
exhibits all the characteristics of linear growth of the unstable wave packet that were
discussed above. This is a recurring theme in our simulations and as will be illustrated
in figure 12(f ) the wave packet emanating from the left edge of the computational
domain can even reach the preliminary stage of saturation. This process however will
not be fully carried out since, as will be discussed in the following, it is disrupted by
spike formation. As long as this wave packet remains far from the one that emerges
in response to the main disturbance at X =0 it cannot affect the overall numerical
solution since, as prescribed by the interaction law in (2.4), the strength of interaction
between different portions of the flow field drops like the inverse of their distance.
Indeed, mesh refinement has verified this fact providing the same evolution of the
leading wave packet irrespective of the dynamics of the one that emanates from the
left corner of the domain. Pertaining to mesh refinement tests it should be pointed
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Figure 8. Snap-shots: (a)–(f ) and FT (g), (h) of the interfacial waves for the air deicing
system in response to an impulsive disturbance; H0 = 2.07, d = 0.001, x = 0.8.

out that results on wave packet spread and growth and spike formation, for long
time after imposition of an initial disturbance of small amplitude or relatively early
for large amplitudes, had to be obtained by carrying out simulations over a very long
interval in the longitudinal direction. This was necessary in order to accommodate
the forerunning waves along with the ones emerging later on in time. Thus a large
number of elements had to be utilized in the simulations with a uniform mesh, e.g. 800
elements when a total of 200 units in the longitudinal coordinate X were necessary
for capturing the film dynamics (figures 8 and 12). Employing the adaptive mesh
option afforded very accurate results with as many as 400 elements for the same
simulations, figure 14, thus confirming the effectiveness of ‘packing’ the elements in
regions exhibiting large variation of the interfacial position.
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Figure 9. Snap-shots: (a)–(c) and FT (d )–(f ) of the interfacial position for the case of air
deicing system in response to a time periodic disturbance; ωf = 9, H0 = 2.076, d = 0.001 and
x0 = 0.8.

Applying a disturbance that is local in space but sinusoidal in time (defined in
(2.14b)), we simulate the ‘signalling’ problem. Owing to the convectively unstable
nature of the flow we expect that as time increases, provided that ωf lies in the
unstable region in the frequency spectrum, behind the advancing wave packet of
unstable waves a train of spatially growing waves will be established characterized by
a wavelength kf that corresponds to the imposed frequency ωf (Huerre & Monkewitz
1990). Figure 9 depicts the evolution of the interface at three different time instants for
such a disturbance; d = 0.001, ωf = 9, H0 = 2.076 and x0 = 0.8. The FT of the interface
indicates the emergence of an additional length scale. The latter corresponds to the
most unstable wave whereas the former is directly related to the forcing frequency.
The motion of the dominant wave packet, superimposed on the spatially growing
mode, is clearly shown in the panels of figure 9. After an initial transient during
which both modes coexist, the most unstable mode grows and eventually dominates
the dynamics. Thus, as time advances, one needs to focus on the region behind the
wave packet in order to identify the wavelength kf provided by spatial stability
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Linear theory without Linear theory with Numerical results Numerical results
film inertia film inertia without film inertia with film inertia

Wavelength 4.8 3.85 4.87 3.9
Period 2 3.1 2.05 3
Group velocity 3 1.5 3.1 1.45

Table 5. Most unstable wave characteristics for interfacial waves of the air–water system
predicted analytically and computed numerically with the two different models, with and
without inertia effects; x0 = 1.5, H0 = 3.32.

analysis. The FT panels, shown in figure 9, clearly illustrate this behaviour. More
details on the nonlinear evolution of such waves are provided in the next subsection.

We then reexamine the case of deicing fluid presented above, including the effect of
inertia in the film in order to assess its influence on the evolution of interfacial waves.
We introduce the same disturbance as in the case without inertia depicted in figure 8,
and numerically follow the spatiotemporal evolution of the wave. The characteristics
of the most unstable wave are recovered and compared against the findings of linear
theory and numerical simulations without inertia effects (table 4). Both models provide
the same values for the wavelength frequency and group velocity of the most unstable
wave, as expected due to the very small value of M ≈ 10−9. Therefore the model that
neglects film inertia is sufficient to describe the dynamic behaviour of this particular
system.

Next we consider the case of a water film, also in the limit of negligible inertia,
despite the fact that in this case the ratio of viscosities is not too small, M ≈ 0.3.
We introduce an impulsive linear disturbance, H0 = 3.32, x0 = 1.5 and d = 0.0001,
and calculate the characteristics of the resulting wave. According to linear theory,
in the limit of negligible inertia effects, the water–air system is convectively unstable
for disturbances at position ranging up to x0 = 1.2. Beyond this critical location a
region of absolute instability exists. This is indeed verified by the simulations whereby
the numerical period, wavelength and group velocity of the most unstable wave are
found to be 2.05, 4.87 and 3.1 respectively, in agreement with the predictions of linear
stability analysis for this case (table 5). It should also be pointed out that the selection
criterion for global instability (Chomaz, Huerre & Redekopp 1991) also applies for
the water–air system without film-inertia,

∂ω

∂k

(
k, x; We, Fr

)
=

∂ω

∂x

(
k, x; We, Fr

)
= 0, ω = ω

(
k, x; We, Fr

)
(4.2)

with k, ω and x taken to be complex variables, and assuming a constant rainfall rate
for the base state (defined in (2.1a)). The analysis is performed on dispersion relation
(4.1) and the growth rate of the global mode frequency ωG turns out to be quite
small, ωGi ≈ 0.02. The effect of nonlinearity on the relative importance of absolute
and convectively instabilities as well as the possibility for a global mode to arise is
investigated in the next subsection.

We then repeat the investigation of the air–water system, subject to the same
type of disturbance, with the model that accounts for film inertia. It is important to
mention that for this particular case linear theory predicts absolute instability when
0.8 � x0 � 3. Figure 10 depicts the evolution of the interface with time along with its
FT at a selected time instant for an impulsive disturbance at x0 = 1.5, revealing the
onset and translation of the growing wave packet. It is characterized by a significant
reduction of the group velocity as well as of the wavelength of the most dangerous
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Figure 10. Snap-shots of the interface: (a)–(e) FT of the interface over the entire
computational domain at time T = 13, (f ) shape of the interface around position X = 0
at T =13, (g) FT of the interface around position X = 0 at time T = 13 (h). The case of
air–water system is considered when inertia is accounted for in response to an impulsive
disturbance; H0 = 3.326, d = 0.0001 and x0 = 1.5.

wave as a result of increased inertia. Thus, the shape of the interface is clearly
dominated by the most unstable wave.

By performing an FT on the numerical results, figure 10(f ) we find that the fastest
growing wave has a wavelength equal to 3.9 instead of 4.8 predicted in the absence of
inertia. Moreover, the group velocity is found to be on the order of 1.5 instead of 3.
The above findings are in agreement with the predictions of linear stability analysis
when inertia forces of the film are included (table 5). The wavelength of the absolutely
unstable mode, 2π/k0 = 4.45, is only identifiable if one focuses in the region around
the origin (figure 10h). This is clearly illustrated in figure 10 depicting the shape of
the interface throughout the computational domain and in a region near the origin
at T = 13 (figures 10c and 10g) and their respective FT (figures 10f and 10h). In
fact, the absolutely unstable mode progressively becomes less and less identifiable as
it is dominated by the most unstable wave. This is partially understood in the light
of linear theory since the growth rate of the absolutely unstable mode, ω0i ≈ 0.09, is
much smaller than the growth rate of the most unstable wave, ωi = 0.78. Consequently,
the wave with vanishing group velocity occupies the left region of the wave packet
which essentially never entirely leaves the position of the initial disturbance. It should
be stressed that the amplitudes shown in figures 10(f ) and 10(h) are scaled and
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Figure 11. Snap-shots: (a)–(d ) of the interfacial position for the case of air deicing system,
in response to an impulsive disturbance; H0 = 4, d = 0.001 and x0 = 0.8.

consequently they should not be compared. Rather, the wavenumbers corresponding
to amplitude maxima are of interest as they provide the relevant wavelength, � =2π/k.

4.2.2. Results for interfacial waves in the nonlinear regime

The above discussion has shown that our numerical approach can adequately
capture growth of interfacial waves in the presence of a boundary layer, in the linear
regime. We now proceed in examining the effect of nonlinearity on film growth. To this
end, we either impose an initial disturbance that is characterized by larger amplitude
or run the simulations over a longer time interval. In both cases we expect to get a
more realistic view on the actual film dynamics.

We first focus on the case of a film of deicing fluid that is depicted in figure 8
and register the shape of the interface as time increases beyond the range of validity
of linear theory. As illustrated by the panels of figure 8 showing the location of the
interface, the wave packet predicted by linear theory becomes flatter indicating a
tendency to generate a wavetrain dominated by the wavelength of the most unstable
wave. However, in this process the waves forming the wave packet become unstable
and the latter disintegrates to a rather irregular wave structure that is characterized
by spikes. It is important to note that the height of such structures can be as large as
twice the original film height and it was not seen to exceed that height in any of the
simulations that we carried out. Figure 11 shows the evolution of a deicing film with
initial dimensionless thickness H0 = 4 subject to the same type of disturbance as in
figure 8. Indeed the dynamics of film growth is very similar with those portrayed in
figure 8, with the emerging spikes appearing over the same time scale while reaching
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Figure 12. Snap-shots of the interfacial waves for the air deicing system in response to an
impulsive disturbance, H0 = 2.076 and x = 0.8, when (a), (b) and (c) d = 0.2 and (d ), (e) and
(f ) d =0.4.

twice the initial film height. Increasing the initial disturbance to d = 0.2 and 0.4 and
repeating the simulation we recover the above pattern, only at a shorter time interval,
of wave packet flattening and destabilization into a succession of spikes that reach
twice the initial film height, figure 12. The spikes again move at a speed that is
larger than that of the original linear waves, ug =3.75; their wavelength is longer and
their rate of appearance indicates that there is a tendency of such longer waves to
progressively dominate the shape of the interface. In fact beyond a certain range in
the amplitude of the disturbance the linear part of the evolution of the wave packet
is no longer obtained as it is rapidly bypassed by spike formation.

As can be surmised by the shape of the interface around the spikes, they are forerun
by a series of short wavelength and much smaller height capillary waves while they
are followed by a region of relatively uniform height. This structure is reminiscent of
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Figure 13. Evolution of the streamfunction for the air deicing system in response to an
impulsive disturbance; H0 = 4 and d = 0.001.

solitons that tend to appear when long waves dominate water waves. The intensity of
the above capillary waves is dependent on the relative importance of capillarity and
film inertia as they are characterized via We and film Reynolds,

Ref =
ρwuf Hf

μw

≈
ρw

(
λH0

μ

μw
U∞Re−1/8

) (
H0LRe−5/8

)
μw

= λH 2
0

νρwμ

μ2
w

Re2/8 = λH 2
0 Re2/8.

(4.3)

Upon comparing spike formation illustrated in figures 8(f ) and 11(d ) one notices
that a larger base flow film thickness H 0, eventually leads to a weaker capillary
wave formation downstream of the spike. Increasing the amplitude of the initial
disturbance in the shape of the film also amounts to increasing film inertia. This
is clearly manifested in the progressively weaker capillary activity ahead of the
dominant spikes exhibited in figures 8(f ), 12(c) and 12(f ), corresponding to amplitudes
d = 0.001, 0.2 and 0.4. Figure 12(d–f ), pertaining to the largest amplitude d =0.4,
clearly illustrate the formation of a similar second spike following the leading one
indicating the pattern of soliton formation. The speed of the spike was also calculated
and the tendency for higher speed with increasing spike height was verified. Similar
effects and their association with the film Reynolds were observed experimentally and
analysed numerically in a recent article on soliton formation in vertically falling films
(Meza & Balakotaiah 2008).

Figure 13 depicts the evolution of streamfunction in the gas phase near the interface
for the flow situation of figure 11. Areas of mild flow recirculation are clearly indicated
by white colour regions where streamfunction is negative; the streamfunction of the
gas phase vanishes exactly on the interface. They are located just ahead of the spikes
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Figure 14. Snap-shots of the interfacial waves for the air deicing system in response to an
impulsive disturbance using a total of 400 elements in the longitudinal direction combined
with the adaptive mesh option; H0 = 2.076, d = 0.001 and x = 0.8 as in figure 8.

and they periodically come and go following the slight fluctuation of the height of the
spikes. The same behaviour is recovered in the case of a time periodic disturbance at
long times after the imposition of the initial disturbance, figure 9. The most unstable
wave evolves in the fashion described above, whereas the spatially growing wave is
rapidly modified as it interacts with the wave packet that spreads out as it is convected
downstream. Spike formation is again the dominant long-time behaviour.

We now proceed to examine how nonlinearity affects the air–water system and
thus to determine the role of inertia in the nonlinear regime. To this end, we focus
on the simulation for boundary layer flow over a water film and we either follow
the linearly excited interfacial wave over a longer time interval or we set a greater
initial disturbance. The flow arrangement presented in figure 10 for a disturbance with
d =0.0001 at X0 = 1.5 is followed over a longer period of time. As can be gleaned
from the corresponding panels of figure 10 the shape of the interface exhibits a much
different behaviour than the one observed for the air deicing system. When inertia of
the liquid is taken into consideration the shape of the interface is dominated by a
single spike. Moreover, the height of the emerging spike is more than double the initial
film height and there is no indication that it will stop growing beyond a certain value.
In addition, upstream of the maximum spike we observe an area of film depletion.
The wavelength corresponding to the absolutely growing mode is not identified in the
FT plot covering the entire computational domain, figure 10(f ), as it is dominated by
the most unstable wave, that constantly grows and spreads over large portions of the
flow domain, and its harmonics. The onset of a frontal arrangement of the travelling
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Figure 15. Snap-shots of the interfacial waves for the air–water system in response to an
impulsive disturbance, H0 = 3.326 and x =1.5, when (a), (b) and (c) d = 0.1 and (d ), (e) and
(f ) d = 0.4.

wave packet is not observed in figure 10 as the wave packet never reaches saturation
due to spike formation. Repeating the simulation with a larger initial disturbance
recovers the above pattern at a shorter time scale (figure 15). In fact, as the amplitude
increases significantly, d = 0.4, the linear part of the evolution of the wave packet is
bypassed and spike formation is evident almost immediately after imposition of the
disturbance. The streamline pattern for the case with d = 0.1 is shown in figure 16
indicating areas of intense recirculation in white colour ahead of the emerging spike.
The height and thickness of the flow reversal region is growing in response to the
developing spike which acts as a sink of the surrounding liquid. Thus, the effect of
inertia in the case of the air–water system is to generate a single structure of large
thickness that blocks the flow of the surrounding gas leading to large pressure drops
(figure 17) and significant flow reversal.

An interesting issue regarding the evolution of interfacial waves is the possibility
for a global instability to arise when longitudinal variations in the base flow are
taken into account. Indeed, as was seen in the previous subsection, the criterion for
global instability is satisfied for the air–water system in the absence of inertia effects,
whereas there is evidence that it is present even when inertia effects are accounted for
since there is an interval in x within which the flow is absolutely unstable (Pelekasis
& Tsamopoulos 2001). Simulations were carried out for both situations, allowing for
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Figure 16. Evolution of the streamfunction for the air–water system in response to an
impulsive disturbance; H0 = 3.326 and d = 0.1.
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Figure 17. Spatiotemporal evolution of pressure for the air–water system with initial height
3.326 and d = 0.1.
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Deicing fluid ρ/ρw μ/μw M Fr We

M75 (25% water) 0.00131 1.22×10−3 0.00114 39425.148 58.63
M50 (60% water) 0.00132 2.83×10−3 0.006 39425.15 65.81
D100 (neat) 0.00128 9.38×10−4 0.00068 39425.155 47.37
D75 (25% water) 0.001 1.98×10−3 0.0039 39425.13 59.38

Table 6. Dimensionless parameters for different deicing fluids.

the film thickness and shear to vary as prescribed by (2.1) and the Blasius solution,
respectively, and setting Re to 105 in order to calculate x when X varies along the
computational domain with X =0 corresponding to x0. x0 = 1.5 was chosen for the
case with inertia effects included. This value corresponds to the highest growth rate
of the absolutely unstable mode in the range of absolute instability, 0.7 � x � 3.
The evolution of the interface in the latter flow situation, the case with the air–water
system without inertia effects behaving quite similarly, indicated that the structure
with the growing spike still dominates the system dynamics. The only difference
between the interfacial shape as obtained in this fashion and the one in figure 15
where uniform initial film thickness and film velocity are assumed, lies in the weak
variation of film thickness with X underneath the fast variation of the evolving wave
packet.

These findings are in agreement with the experimental observations of Craik (1966)
who studied the waves that develop in the air–water interface for thin liquid films
and large Re. Craik (1966) conducted experiments in a channel and was able to
capture ‘slow’ waves with a propagation speed smaller than or of the same order of
magnitude as the velocity of the liquid surface. In the same study he reported that
these waves are non-periodic and as they evolve they form steep spikes with height
that significantly exceeds the mean thickness value. He also reported dry regions of
very small film thickness as the average film thickness decreased. In our simulations
the dimensionless speed of wave propagation is estimated to be 1.1 while the velocity
of the surface is equal to 0.77 for the air–water system, which is of the same order
of magnitude. Despite the fact that in the present study air flow is in the form of a
laminar boundary layer rather than turbulent Poiseuille flow, as is the case in Craik’s
experiments (Craik 1966), the small film thickness guarantees that air-film interaction
is within the laminar sublayer in which case the bulk of the analysis employed here
is valid. Based on the above, we conjecture that the interfacial waves captured here
are the ‘slow’ waves according to Craik’s definition.

Having established the significant role that film inertia plays on the evolution of
interfacial waves, we then try to determine the minimum value of parameter M

above which inertia plays an important role. We use four different deicing fluids with
properties that are provided by Ozgen, Carbonaro & Sarma (2002). Furthermore, we
assume the same chord length, air velocity, shear and initial film height as in the case
of the deicing fluid examined previously (L =0.279 m, U∞ = 27.28 m s−1, λ= 0.371,
H0 = 2.076). Table 6 gives the relevant dimensionless parameters that are used in the
computations while figure 18 illustrates the long-time behaviour of the interface for
each case. As one can easily glean from figure 18 only deicing fluid M50 forms a
peak of continuously increasing height that does not have the tendency to saturate.
The rest of the fluids appear to follow the behaviour observed for liquids with large
viscosity where the disturbance reaches a certain maximum height and stops growing
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Figure 18. Snapshots of the interface long-time behaviour for four different deicing fluids
when inertia of the film is included: (a) M75, (b) M50, (c) D100 and (d ) D75.

any further. This behaviour is correlated with the value of parameter M of the above
fluids. Indeed deicing fluid M50 has the largest M value among them, 0.006. Thus
we can conclude that for given initial height and shear there is a minimum value of
parameter M above which film inertia modifies the flow pattern leading to an intense
recirculation pattern. In the context of vertically falling films it was seen by Meza &
Balakotaiah (2008) that as the effect of film viscosity is decreased film height tended
to saturate to a much larger thickness. In the present study severely increased film
thicknesses should be compensated by a much larger displacement thickness for the
boundary layer and a significantly larger computational domain in the transverse
direction, Ȳ∞. However, as the film thickness increases dramatically and massive
separation takes place the triple-deck structure loses validity and a different approach
should be adopted. Hence a more comprehensive investigation for a saturation height
of the spikes when film inertia is important was not pursued in the present study.

The evolution of pressure distribution and the streamline pattern, illustrated in
figures 17 and 16 for the air–water system, indicate the tendency towards formation of
a finite time singularity leading to breakup of the boundary layer formulation during
the last stages of the simulations. This process occurs in the manner described by
Smith (1988) via a singularity in the pressure distribution. The pressure distribution
and streamline pattern are similar to the numerical predictions by Peridier et al.
(1991b) for the case of a vortex that interacts with a boundary layer over a plate. It is
interesting to note that in the present study the boundary layer is taken to be quasi-
steady and consequently the process in instigated by unlimited growth of interfacial
waves. This attests to the universality of the process of singularity formation, since
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TS waves do not play a role in the simulations discussed in § 4.2, in the unsteady
interactive boundary layer formulation. It should also be stressed that the air deicing
fluid flow system does not exhibit such an unlimited growth and finite time singularity
formation. Rather, it tends to saturate once the spikes achieve a certain average height.
This is a result of the diminishing effect of film inertia for such ultra-high viscosity
films. A very small base flow film thickness or shear rate, amount to loss of film
inertia leading to height saturation as well. Consequently, it can be argued that
viscous effects can negate the process of singularity formation and saturate the film
thickness. A similar outcome in the balance between inertia and viscosity is observed
in finite time singularity formation in the context of bubble oscillations and breakup
(Tsiglifis & Pelekasis 2005). The balance between inertia and capillarity determine the
time and space scales for the pinching process of a sufficiently elongated bubble of
initial radius R, via a finite time singularity. When viscous effects are accounted for
there is a threshold in Ohnesorge number, Oh= μ/(ρRσ ) that compares the relative
importance of viscous and capillary forces, below which pinching does not take place
and the bubble finally returns to its initial spherical shape.

5. Conclusions
Concluding we should stress the success of B-cubic splines within the context

of the finite element methodology, in capturing severe interfacial wave phenomena
due to their increased accuracy and smoothness. Their superiority over conventional
Lagrangian basis functions is also notable and worth being explored in more general
flow arrangements, perhaps even for the solution of the full Navier–Stokes equations
combined with the appropriate ‘staggered grid’ formulation for pressure. The latter
might be in the form of a spline representation of lower accuracy than cubic.
Regarding the problem under investigation, it is important to point out the splitting
of time scales for most common air–liquid systems characterized by very small
viscosity ratio, μ/μw → 0. Assuming a quasi-steady state for the gas simplifies the
problem significantly and allows for capturing interfacial phenomena that occur on
a much slower time scale than the passage of TS waves. The effect of wavelengths
pertaining to interfacial waves, which are smaller than those corresponding to classical
TS waves, in bypassing transition is also identified in simulations of the full gas–liquid
interaction problem. Focusing on interfacial wave growth, the results of linear theory
are captured but they are seen not to be able to describe long-time or large-amplitude
system dynamics. In fact, very viscous liquids where film inertia is negligible evolve
into longer waves that are characterized by spikes that travel much faster than the
original wave packets predicted by linear theory. A number of such waves are observed
whose structure and speed resemble solitons that only grow up to a certain height that
is, roughly, twice the initial film thickness. When film inertia is important the spike
structure is replaced by a single spike that is constantly growing, followed by a region
of film depletion. Ahead of the spike a region of intense recirculation is captured
that ultimately leads to massive boundary layer separation. The mechanics of this
process are attributed to the formation of a finite time singularity in the pressure
distribution in a manner that is universal for the unsteady interacting boundary layer
formulation, irrespective of its association to TS or interfacial waves. In the case of air
deicing fluids excessive film viscosity inhibits the development of singularities leading
to saturated spike formation. The repercussions of these effects in the aerodynamic
characteristics of airfoils under conditions of rainfall are obvious and deserve further
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investigation in order to verify whether such a behaviour persists in the presence of
other hydrodynamic effects, e.g. onset of three-dimensional disturbances.
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